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The mechanism of destruction of a central transport barrier in a dynamical model of a geophysical zonal jet
current in the ocean or the atmosphere with two propagating Rossby waves is studied. We develop a method
for computing a central invariant curve which is an indicator of existence of the barrier. Breakdown of this
curve under a variation in the Rossby wave amplitudes and onset of chaotic cross-jet transport happen due to
specific resonances producing stochastic layers in the central jet. The main result is that there are resonances
breaking the transport barrier at unexpectedly small values of the amplitudes that may have serious impact on
mixing and transport in the ocean and the atmosphere. The effect can be found in laboratory experiments with
azimuthal jets and Rossby waves in rotating tanks under specific values of the wave numbers that are predicted
in the theory.
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Transport and mixing of water �air� masses and their char-
acteristics play a crucial role in the ocean and atmosphere
dynamics. In the Lagrangian approach, a particle with the
position r� is advected by an Eulerian velocity field v��r� , t�

dr�

dt
= v��r�,t� . �1�

It is known that a simple deterministic velocity field may
produce practically unpredictable particle trajectories, the
phenomenon known as chaotic advection �1–3�.

We study theoretically and numerically horizontal cross-
jet transport in geophysical zonal flows. To list a few, we
mention the Gulf Stream in the Atlantic, the Kuroshio in the
Pacific, and the polar night Antarctic jet in the atmosphere,
which are the jet currents separating water �air� masses with
different physical properties. Transport of particles across a
geophysical jet is of crucial importance and may cause, for
example, depletion of ozone in the atmosphere and heating
and freshing of waters in the ocean. The velocity fields of
real flows are not, of course, regular, but if the Eulerian
correlation time is large as compared to the Lagrangian one,
the problem may be treated in the framework of chaotic ad-
vection concept.

The equations of motion of a passive particle with coor-
dinates x and y advected by a two-dimensional incompress-
ible flow with a stream function � are known to have a
Hamiltonian form �1�

dx

dt
= u�x,y,t� = −

��

�y
,

dy

dt
= v�x,y,t� =

��

�x
, �2�

with the phase space being the position space for advected
particles. Chaotic mixing and transport in jet flows have been
extensively studied with kinematic models, where the veloc-
ity field is a given function of x, y and t imitating real flows
�see �3–6� and references therein�, and with dynamical mod-
els conserving the potential vorticity �see �3,7–9� and refer-
ences therein�. The problem has been studied as well in labo-
ratory where azimuthal jets with Rossby waves have been
produced in rotating tanks �10,11�. It has been found both
numerically and experimentally that fluid is effectively

mixed along the jet, but in common opinion, a large gradient
of the potential vorticity in the central part prevents transport
across the jet. A technique, based on computing the finite-
scale Lyapunov exponent, has been found useful in Ref. �12�
to detect the presence of cross-jet barriers in kinematic mod-
els. A comparison of properties of cross-jet transport in ki-
nematic and dynamical models of atmospheric zonal jets has
been done recently in Ref. �13�. Up to now, the transport
barrier has been shown numerically �5,9� to be broken only
with so large values of the wave amplitudes that are beyond
of the validity of linear models and can be hardly observed in
real flows.

The aim of the Brief Report is to prove that cross-jet
transport under appropriate conditions is possible at com-
paratively small values of the wave amplitudes and, there-
fore, may occur in geophysical jets. We develop a general
method to detect a core of the transport barrier and find a
mechanism of its destruction using the dynamical model of a
zonal jet flow with two propagating Rossby waves. The
method comprises the identification of a central invariant
curve �CIC�, which is an indicator of existence of the barrier,
finding certain resonant conditions for its destruction at
given values of the wave numbers, and detection of cross-jet
transport.

Motion of two-dimensional incompressible fluid in the ro-
tating frame is governed by the equation for conserving po-
tential vorticity �� /�t+v� ·�� ��=0. In the quasigeostrophic
approximation �14�, one gets �=�2�+�y, where � is the
Coriolis parameter. The x axis is chosen along the zonal flow,
from the west to the east and y–along the gradient from the
south to the north. Barotropic perturbations of zonal flows
produce Rossby waves, which have an essential impact on
transport and mixing in the ocean and the atmosphere �14�.
The stream function is sought in the form

� = �0 + �int = �0�y� + �
j

� j�y�eikj�x−cjt�, �3�

where �0 describes a zonal flow and �int is its perturbation
which is supposed to be a superposition of zonal running
Rossby waves. After substituting Eq. �3� in the equation for
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the potential vorticity and a linearization, one gets the
Rayleigh-Kuo equation �15�.

�u0 − cj��d2� j

dy2 − kj
2� j� + �� −

d2u0

dy2 �� j = 0, �4�

where the zonal-velocity u0=−d�0 /dy has a single extre-
mum at y=0. If one takes the following zonal-velocity pro-
file �the Bickley jet �8��:

u0�y� = U0 sech2 y

D
, �5�

then Eq. �4� admits two neutrally stable solutions

� j�y� = AjU0D sech2 y

D
, j = 1,2, �6�

where U0 is the maximal velocity in the flow, D is a measure
of its width, and Aj are the wave amplitudes. It is easy to
check that Eqs. �5� and �6� are compatible with Eq. �4� if
there is the following condition for the phase velocities:

c1,2 =
U0

3
�1 � ��, � � 	1 − ��, �� �

3D2�

2U0
, �7�

which are connected with the wave numbers by the disper-
sion relation c1,2=U0D2k1,2

2 /6. Two neutrally stable Rossby
waves exist if �D2 /U0	2 /3.

Thus, the stream function of the zonal flow with two
Rossby waves, satisfying the conservation of the potential
vorticity, has the form

��x,y,t� = − U0D�tanh
y

D
− sech2 y

D

 �A1 cos k1�x − c1t�

+ A2 cos k2�x − c2t��� . �8�

One of the tasks of this Brief Report is to present results in
the form allowing a comparison with laboratory experiments
�10,11� in which an azimuthal jet at the radius R with Rossby
waves with the wave numbers n1 and n2 has been produced

k1,2 =
n1,2

R
, c1,2 =

U0D2

6R2 n1,2
2 . �9�

Let it be n1�n2, and the wave with n1 is called the first one.
Let the wave numbers be represented as n1=mN1 and n2
=mN2, where m�1 is the greatest common divisor and
N1 /N2 is an irreducible fraction. Introducing new coordinates
x�, y�, and t�

x =
�x� + C2t��R

m
, y = Dy�, t =

R

mU0
t�, �10�

we rewrite the stream function �8� in the frame moving with
the phase velocity of the first wave

���x�,y�,t�� = − tanh y� + A1 sech2 y� cos�N1x��

+ A2 sech2 y� cos�N2x� + �2t�� + C2y�,

�11�

where

�2 �
2N2�N1

2 − N2
2�

3�N1
2 + N2

2�
, C2 �

2N1
2

3�N1
2 + N2

2�
. �12�

Thus, we get the stream function �11� with the control pa-
rameters N1 and N2, which are specified by the four experi-
mental parameters: U0, �, D, and R. One can now study
cross-jet transport with any combination of the wave num-
bers n1 and n2 that can be realized in a laboratory experiment
by adjusting the radius R, the jet width D, the maximal ve-
locity U0, and the Coriolis-like parameter � �10,11�.

The advection Eqs. �2� with the stream function �11� have
the form

dx

dt
= − C2 + sech2 y�1 + 2A1 tanh y cos�N1x�

+ 2A2 tanh y cos�N2x + �2t�� ,

dy

dt
= − sech2 y�A1N1 sin�N1x� + A2N2 sin �N2x + �2t�� ,

�13�

where we omitted the primes over x, y, and t. If the ampli-
tude of the second wave is zero, A2=0, then the set �13� is
integrable. The phase portrait of the steady flow with A1
=0.2416, N1=5, and N2=1 is shown in Fig. 1�a� in the frame
moving with the phase velocity of the first wave. The east-
ward jet is situated between two chains with five vortices.
The southern and northern peripheral currents are westward
in the moving frame. In a steady flow, all the particles follow
streamlines. At A2�0, chaos may arise in a typical way: a

FIG. 1. �a� A2=0. Phase portrait of the steady jet flow with N1

=5 and N2=1 in the moving frame. �b� A2=0.09. CIC �the bold
curve� is a barrier to transport across the jet. �c� A2=0.095. Destruc-
tion of CIC and onset of cross-jet transport.

BRIEF REPORTS PHYSICAL REVIEW E 81, 017202 �2010�

017202-2



stochastic layer appears at the place of the broken separa-
trices �Fig. 1�b� and 1�c��.

At odd values of N1 and N2, Eqs. �13� have the two sym-
metries

Ŝ:
x̃ = 
 + x ,

ỹ = − y ,
� Î0:
x̃ = − x ,

ỹ = y ,
� �14�

which are involutions, i. e., Ŝ2=1 and Î0
2=1. Solving the

equation Î0�xj ,yj�= Ŝ�xj ,yj�, j=1,2, one gets indicator points
�16�: �x1=
 /2, y1=0� and �x2=3
 /2, y2=0�. Iterating
them, we construct a CIC �17� in the central part of the jet
which is the last transport barrier in the sense that the CIC
breaks down and is replaced by a stochastic layer with varia-
tion in the wave amplitudes. We illustrate this in Fig. 1. At
A2=0.09, the CIC together with neighboring invariant curves
forms a narrow transport barrier �Fig. 1�b��. We define a CIC

as a curve that is invariant under the operator Ŝ and the
evolution operator over the period 2
 /�2. The CIC separates
the northern and southern parts of the flow. At A2=0.095, the
CIC breaks down, and cross-jet transport becomes possible
�Fig. 1�c��.

It is reasonable to suppose that destruction of CIC is
caused by a ballistic resonance between the maximal fre-
quency of the particle motion in the central jet and the per-
turbation frequency �2. The first one is estimated from Eq.
�13� to be f1�−C2+1, and the second one is given by Eq.
�12�. So, the approximate condition of the ballistic resonance
is

f1

�2
=

N1
2 + 3N2

2

2N2�N1
2 − N2

2�
. �15�

At small amplitudes, this ratio gives an approximate estimate
for the CIC winding number w �17�. Equating the right-hand

side of Eq. �15� to a rational number, one finds those values
of the wave numbers N1 and N2 for which the CIC is strongly
influenced by the corresponding resonance, and, therefore,
cross-jet transport becomes possible.

In order to reveal a scenario for CIC destruction we plot
in Fig. 2 the dependencies of w and the maximal deviation of
iterations of the indicator point along the y axis, 
ymax
, on A1
and A2 for the pair �N1=5 , N2=1�. The bifurcation curves
with the winding numbers corresponding to certain reso-
nances are shown in Fig. 2�a�. The even 2:1 �w=0.5� and odd
7:3 �w=0.4285� ones produce two deep and wide spikes in
the plots. White color codes those values of the amplitudes
A1,2 at which a CIC is broken. Comparing Figs. 2�a� and
2�b�, we see that the zone with broken CIC in Fig. 2�a�
correspond to the values 
ymax
�1.5 in Fig. 2�b�, i.e., itera-
tions of points, situated initially in the jet core, cover the
region on the size of order �3 jet’s half-width. It means
breakdown of central transport barrier at those values of A1,2
at which the CIC is broken. Figure 2 demonstrates clearly
that destruction of the transport barrier may happen at com-
paratively small values of the wave amplitudes �A1,2	1�.

FIG. 2. Diagrams of �a� the winding number w and �b� the
maximal deviation of iterations of the indicator point along the y
axis, 
ymax
, in the space of the Rossby wave amplitudes A1 and A2.
White zone: regime with cross-jet transport.
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FIG. 3. Mechanism of CIC destruction and onset of cross-jet
transport. �a� A2=0.087. Smooth CIC and neighboring invariant
curves form a transport barrier. �b� A2=0.088. A narrow stochastic
layer �shadowed strip� appears at the place of the broken CIC. �c�
A2=0.09. CIC appears again as a meandering curve. �d� A2=0.1.
Breakdown of CIC and onset of cross-jet transport. Insets show
magnification of the phase space region nearby the resonance 7:3.
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Our model is essentially a linear one, and the Rayleigh-Kuo
equation is valid to first order in the wave amplitudes.

To illustrate the mechanism of destruction of CIC we
study the topology of the phase space near the islands of the
resonance 7:3 �see the spike with w=0.4285. . . in Fig. 2�. Let
us fix A1=0.2418 and gradually increase A2 away from zero.
In the range 0	A2	0.088, the smooth CIC and neighboring
invariant curves form a transport barrier �Fig. 3�a��. At A2
�0.088, invariant manifolds of hyperbolic orbits of the reso-
nance 7:3 cross each other, the CIC breaks down, and there
appears at its place a narrow stochastic layer locked between
remained invariant curves �Fig. 3�b��. When A2 increases fur-
ther islands of the resonance 7:3 diverge, and a meandering
CIC appears again between them �see Fig. 3�c� at A2=0.09�.
At A2�0.095, CIC and surrounding invariant curves are de-
stroyed, and cross-jet transport becomes possible in a wide
range of the y coordinate �Fig. 3�. Thus, existence of a CIC is
a sufficient but not necessary condition for existence of a
transport barrier. Animation of metamorphoses of topology
of the transport barrier and its destruction at a fixed value of
one of the wave amplitudes and variation in the other one
can be found in Ref. �18�.

In conclusion, we discuss briefly a possibility for check-
ing main results of our work in laboratory experiments on
chaotic advection in rotating fluid �10,11� imitating nonlinear
geostrophical geophysical flows in the ocean and the atmo-

sphere. An azimuthal jet with Rossby waves was produced
by the action of the Coriolis force on radially pumped fluid
in a rotating tank with a slope imitating the � effect on the
rotating Earth. The measured velocity field was rather well
approximated by the model stream function �8� �11�. Rapid
mixing on either side of the jet was observed for a quasip-
eriodic flow, but no significant transport was observed across
the jet. In our opinion the reason is that the experiments have
been carried out under conditions that are far away from the
resonances which are capable of destroying the central trans-
port barrier at the values of the Rossby wave numbers real-
ized in the experiment. The results obtained in this Brief
Report allow to specify those values of the control param-
eters of the flow, the Rossby wave numbers, for which there
exist specific resonances capable of destroying transport bar-
riers at comparatively small values of the wave amplitudes.
Our recommendation to observe cross-jet transport in labo-
ratory is to produce an azimuthal jet and Rossby waves with
odd wave numbers whose values differ significantly from
each other, say �N1=5 , N2=1� or �N1=7 , N2=3�.
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